科学记数法是一种记数的方法。把一个数表示成a与10的n次幂相乘的形式(1≤|a|<10,a不为分数形式,n为整数),这种记数法叫做科学记数法。当我们要标记或运算某个较大或较小且位数较多时,用科学记数法免去浪费很多空间和时间。
下面是我对其一些总结,希望对大家有用。
定义:
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),这种计数法叫做科学记数法。
有效数字:
从一个数的左边非0数字其,到末尾数字止,所有数字都是这个数的有效数字。
科学记数法的特点:
(1)简单:对于数目很大的数用科学记数法的形式表示起来又科学、又简单。
(2)科学记数法的形式是由两个数的乘积组成的,其中一个因数为a(1≤a<10,a∈N*),另一个因数为10n(n是比原来数A的整数部分少1的正整数)。
(3)用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。
速写法:
对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数。
如1800000000000,除最高位1外尚有12位,故科学记数法写作1.8×1012或1.8E12。
10的指数小于0的情形,数出“非有效零的总数(第一个非零数字前的所有零的总数)”
如0.00934593,第一位非零数字(有效数字)9前面有3个零,科学记数法写作9.34593×10-3或9.34593E-3。即第一位非零数字前的0的个数为n,就为10-n(n≥0)
以上就是小编为您带来的“科学计数法怎么表示(科学计数法的基本运算)”全部内容,更多内容敬请关注!
本文链接:http://www.tfjix.com/tj/6936.html